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CHAPTER I

INTRODUCTION

The wide-spread availability of very large, rapid digital

computer systems has lead to the use of two fundamental methods of

modeling the electromagnetic characteristics of wire antennas on or

near threekdimensional metallic surfaces. One technique Is known as

the method of moments whereby the interaction between electromagnetic

fields and their induced currents on the wire antenna as well as on all

parts of nearby conducting bodies, modeled as wire grids or flat plates,

is computed. Consequently, this approach, which computes the electro-

magnetic field from a wire antenna, Is significantly limited by computer

storage and is only practical when the nearby conducting bodies are on

the order of a few wavelengths in size. An alternative approach is to

use the geometrical theory of diffraction (GTD) which requires that

more assumptions about the problem be made, such as the radiation

pattern generated by the antenna, but may be applied to bodies that are

V arbitrarily large in an electrical sense. Much work has been done in

the recent past to combine the method of moments with the GTD in a

hybrid fashion so as to overcome the disadvantages of these techniques

when used separately.

The purpose of this thesis is two fold. First, the idea of a

hybrid technique of combining the method of moments with GTD Is

..1



.MI
entended to account for the mutual coupling between two monopole

antennas on a large circular cylinder by means of curved surface wave

diffraction. Second, the results of this technique are compared to L

those of an analysis program used by the United States Air Force which

predicts electromagnetic coupling between aircraft antennas. The close

agreement between the results of these two different anal.ysis techniques

serves to validate both computer programs.

The basic hybrid technique used in this paper was first described

in the literature by Thiele and Newhouse [1i]. There, the technique was

applied to antennas on and near finite planar surfaces. Wedge diffrac-

tion theory was combined with the method of moments to account for the

finite planar surfaces. Ekelman (2], building on this previous work,

developed a hybrid technique for combining the moment method treatment

of wire antennas with the GTD to account for reflection of electro-

magnetic energy from the curved surface of an infinitely long cylinder

as well as diffraction from the ends of a finite cylinder. In the

present paper, curved surface diffraction theory is used to extend a [
method of moments thin-wire analyses program to account for the propa-

gation of electromagnetic energy around the curved surface of an

infinitely long cylinder.

2
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CHAPTER II

METHOD OF MOMENTS THEORY

In this chapter, a fairly detailed description of the moment

method theory is presented which serves as a foundation for the hybrid

technique presented in Chapter IV. Since this paper is a technique for

extending a moment method analysis program, an extensive discussion of

the method of moments is considered appropriate.

The method of moments is a procedure for reducing an integral

equation of the form

(2-1) fI(z')K(z,z')dz' -- E

Jover structure

to a system of simultaneous linear algebraic equations in terms of the

unknown current I(z'). It can be used to determine the current distri-

bution on an antenna, based on the physical properies of the antenna,

its configuration, and even possible environmental influences such as

the presence of a nearby conducting surface. Thus the traditional

problem in antenna theory of deriving the form of the current disri -

button on the antenna is solved. Once the current is known, radiation

patterns and impedance can be determined in a straightforward manner.

The specific computer code used for the moment method portion of

the analysis is based on the thin-wire program written by Richmond [3].

It requires that all antennas and scatterers consist of thin wires or a

Ni3



grid of thin wires. This constraint allows one to make use of

Pocklington's integral equation to describe the relationship between an

electric field incident on the surface of a wire and the resulting

surface current induced on the wire. Details of the derivation of the 1
Pocklington integral equation are given by Stutzman and Thiele [4]. The

general form of the Pocklington integral equation for a wire of length

L whose axis is parallel to the z axis is given by

(2-2) L/' + k 2  d '
2  F

where

(z,z') = free space Green's function e i7-

r = L2 + (Z2') ]1/2

a = wire radius

I(z') = filamentary line current on the axis of the wire equi-

valent to the induced surface current integrated around

the circumference of the wire

k = wave number of the medium v/;; 7

The parameters w and A are the angular frequency and wavelength

respectively, and u and E are the permeability and permittivity of

the medium surrounding the wire.

Equation (2-2) is based on several key assumptions. First, the

wire is assumed to be "thin"; the wire radius, a, must be much less than

a wavelength. Therefore, it is assumed that only axially directed

currents (z-axis) are present. Secondly, the conductivity of the wire

is assumed to be infinite, and therefore, all induced current resides

on the surface of the wire. Since the radius of the wire is small,

i



this surface current, J(z' ,B), is uniform around the circumference of

the wire at any given point along the wire. Therefore, by symmetry

this surface current can be replaced by a line current which is located

on the axis of the wire. That is

(2-3) I(z) f J(z,e)a@e

It is important to note that eqn. (2-2) is in the form of eqn.

(2-1) so that eqn. (2-2) may be rewritten as

J L/2
(24 I(z')K(zm,z'd'- -

A physical interpretation of eqn. (2-4) is that an electric field

incident on the surface of the wire at point za along the wire axis,

will induce a surface current equivalent to a line current distribution

I(z') located on the axis of the wire over a length L as shown in

Fig. 2-1.

At this point, it is necessary to consider the boundary conditions

at the surface of the wire. From classical electromagnetic theory, at

the surface of a boundary on which there is an incident field, one must

account for a transmitted field and a scattered field as shown in

Fig. 2-2. The relationship between these three tangential fleldz at thea

bm 1A ry. z, is

(2-5) Ei + M s -E t

However, a time varying field cannot exist in a perfect conductor and

since the wire is assumed to be a perfect conductor, the boundary

condition -in the tangential fields at the wire surface becomes

m5
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Fig. 2-1. Equivalent axial wire current induced
by a incident field
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(2-6) 33 + E 0

Eq . (2-5) can be rewritten as

(2-7) L s = - .4

Finally, combining eqn. (2-6) with eqn. (2-4), yields

L/2

(2-8) I(z')K(zmz')dz' - M)(z)
-L/2

A physical interpretation of eqn. (2-8) is that a line current I(z')

located on the axis of a "wire" of length L produces a field Es(z) at an

observation point z on the surface of the "wire" as illustrated in

Fig. 2-3.

The next important step in the moment method concept is to divide

the wire of length L into N segments of length A zn . This allows one

to write eqn. (2-4) as

rL/2 N

/2 n-1

where the current function over the wire, I(zl), is now represented as

a series of current magnitudes at each segment n, (In), multiplied by a

function which describes the shape of the current for each n segment.

F is referred to in the literature as the expansion function. Forn

example, if one chose to make the current constant for each segment,

thereby forming a current function I(z') along the wire consisting of a

series of rectangular pulses, F n could be written as an orthogonal

pulse function. Therefore,

N
(2-10) I(z' ) I F-

n-i
8



II
Fig. 2-3. Scattered field Induced by an equivalent

axial wire current



where
where 1 for z' in zn

(2-11) Fn = 0 otherwise

For illustrative purposes, let us choose the orthogonal pulse

function as the expansion function. This permits factoring constants

out of the integral and eqn. (2-9) can be rewritten as

riL/2 N
(2-12) z(z) i n K(Z ,Z')dz'

•-I4/2 n-I

If K(zmza')dz'
n Az~

Evaluating the integral on the right-hand side of eqn. (2-12),

(2-13) K(z ,zn') dz' - C(z , M.zr A
n

Thus, eqn. (2-12) can be written as

(2-14) - Ei(zm) f IFn  K (zmz') dz' =

-L/2 n-i

~N

I n C ( ,z n') Az'
n-I

Combining eqn. (2-14) with eqns. (2-9), (2-8), and (2-7)

L/2 N0
(2-15) S__Iz)Kzz~z ICz'

z m n m no
-L/2 n-IFI IC(z 3 1 z{)AZ, + I2C(z3,zi)Az +.

+ I C(z ,z')Az + + IC(z Z.') z' - - (z

n M n N m z
10



The physical interpretation of eqn. (2-15) is as follows [4]. The wire

has been divided into N segments of length Az' with the current being

an unknown constant over each segment (due to our choice of the expan-

sion function F). At the center of the ath segment, the sum of the

scattered fields from all of the N segments is set equal to the negative

of the incident field at the point z (eqn. 2-7). The incident field is

a known field due to a source located on the wire (transmitting case) or

a source not located on the wire (receiving case).

By examining eqn. (2-15), one may notice that it resembles

Kirchhoff's network equations

N
(216 E Zmn I n 0 V at m - 1,2,3,...N(2-16) 1

with which most electrical engineers are more familiar (and comfortable),

where

(2-17) Zan = C(Z ,Zn')Az

V= - Ei(z)

Since C(z mZn#)Az is based on the geometry of the wire and Va is given

I for all a, the values for In can be determined by n independent

equations. In addition, the boundary condition of eqn. (2-6) shall be

Jenforced at the center of each of the n segments. This is referred to

as point-matching which is a special case of more general moment

methods. Point matching results in the following system of equations.

J (2-19) 1 1C(Z1 ,Z.')Az' + 12C(z,z 4 ')Az' +... INC(z1 ,zN')--Ei(z1 )

11?( 2,z)Az, + 12.(2,z2')A2  ... INC(-2,z')- -R2(z

i(zN'Zl')Az' I2C(z'z2 )Az +."+ INC(zN''N') - zN)



which can be written in compact matrix notation as

(2-20) [In LC(zn)Az'- [-z 4(Z)]

Making use of eqns. (2-17) and (2-18), eqr. (2-20) can be rewritten as,

(2-21) [In] [z , ,i -V

Finally, the desired solution is obtained from eqn. (2-21) symbolically

ass

(In ) 1I-
(2-22) m,n m

In practice, one does not explicitly generate [Zn1, but instead maymn

solve eqn. (2-21) by using several fairly standard matrix algorithms

which utilize properties of the Zan matrix such as its diagonal

symmetry.

Another important concept of the method of moments is weighted

residuals. As the reader may recall, the point-matching method enforces ""

the boundary condition of eqn. (2-6) only at the midpoint of any seg-

mmmenit on the wire. At points other than the midpoint, za, of a segment,

eqn. (2-6) becomes
5 1o

(2-23) Etan + Etan = R

where R is referred to as the residual. Thus, when R does not equal

zero, the boundary condition is violatedl the more severely this

boundary condition is violated, the greater will be the chance that the

final solution for the currents will be incorrect. By combining eqn,

(2-23) with eqns. (Z-8) and (2-9)

N
(2-23) I FnK(z z')dzl + E (

n-1 fl Z

n 12

LI



and f 'r orthogonal pulse expansion functions,

N

R = n n IC(Zz' + Ei(z )

n-I

In the method of weighted residuals, a current function I(z') is chosen

so as to force the residual to zero in an average sense [4]. This can

be mathematically expressed as

/2

(2-24) 11:12 W m R dz - 0, m 1,23,...,N

where W is referred to as a weighting or testing function. Substituting

eqn. (2-23) Into eqn. (2-24) gives, in generals

LI2 N r r L/2
(2-25)f W.r Z I nj FnK( zaz' )dz'dz 4]aE U(Z )dz - 0

and for the orthogonal rectangular expansion function,

L/2 N L/2
(2-26) Z I C(zz')Az' k + W, E (z)dz 0

f-L/2 n-I -L/2

The point-matching method of enforcing the boundary condition at

segment midpoints amounts to using the dirac delta function

(2-27) W = (z

where

(z - zm)dz - 1

and eqn. (2-26) reduces to the expressions in eqn. (2-15).

In the previous discussion, the orthogonal pulse and dirac delta

function were chosen for the expansion and the weighting function so as

13



to keep the mathematical expressions as simple as possible. However,1.

experience has shown that It is desirable to choose an expansion f'unction

which will closely resemble the anticipated form of the current and to

use that same function as the weighting function. When the expansion I
and weighting functions are chosen to be the same, the procedure Is

referred to as Galerkin's method. Since the current distribution on

thin wire antennas is generally sinusoidal, it follows that the use of

sinusoidal exoansion and weighting functions leads to high accuracy

with many fewer segments required than if the point-matching method is

used. Fewer segments results in fewer segment currents (I n) and

therefore, a fewer number of independent equations to solve. This in

turn yields a significant savings in computer memory and execution time

required.

The thin-wire program written by Richmond is based on Galerkdn's

method utilizing piecewise sinusoidal expansion and weighting functions.

This is the method and computer program upon which this thesis is built

and which extends the class of problems which the computer program can

handle.

14
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CHAPTER III

GEOMETRIC THEORY OF DIFFRACTION-

APPLICATIONJ 1OR A SMOOTH a)NYF.X SURFACE

The purpose of this chapter is to Introduce a high frequency

method, the geometrical theory of diffraction (GTD), which is applicable

to bodies that are electrically large. This chapter wili then disc-ass

the use of GTD to determine the propagation of electromagnetic energy

over the curved surface of a circular cylinder.

GTD views the propagation of electromagnetic energy as rays

(analogous to rays of light) which are subject to scattering and

diffraction from specific parts of a body such as flat surfaces, curved

surfaces, or sharp edges. Unlike the method of moments, GTD only

requires detailed information about the interacting body at points of

reflection and diffraction. Thus, unlike the method of moments, the

complexity and magnitudie of the analysis does not increase as the

electrical size of the interacting body increases. However, GTD relies

on the use of more assumptions than the method of moments; primarily,

the ray-like behavior of electromagnetic energy, which tends to render

this method useless at very low frequencies.

The remainder of this chapter will focus on the diffraction

which occurs at the surface of a perfectly conducting circular cylinder.

15



In conventional GTD analysis, the total field exterior to a

curved surface will consist of incident, reflected, and diffracted

rays which may be divided into five secoarate regions as shown in

Fig. 3-1 [51. The shaded Region II in the vicinity of the shadow

boundary is a transition region which divides the lit zone from the

shadow zone. Very close to the surface, Region II is subdivided into

Regions IV and 7I in the shadow and lit zone respectively. Region V

is a subi4vision of Region III which is in the immediate vicinity of

the surface. More specifically, Regions IV and V are close to the

portion of the surface which is a caustic of the surface diffracted

rays; whereas, Region II is in the vicinity of the point of grazing

incidence (Q1) which is a caustic of the reflected ray. Regions IV,

V and VI are therefore commonly referred to as the caustic or surface

boundary layer regions. The curved surface diffraction hybrid analysis

developed in this paper will be exclusively for this surface boundary

layer.

The theory and equations which describe electromagnetic behavior

in the surface boundary layer of an arbitrary, perfectly-conducting

convex surface are explained by Pathak and Wang [6]. For the sake of

brevity, this chapter will simply present the equations used to predict

the electric field strength in the surface boundary layer from an

infinitesimal electric current (or current moment) which is also located

within the surface boundary layer. According to equ. (31) in Ref. [ 81,

the electric field strength from a source at point P' which is observed

at point F (see Fig. 3-2) is given by the following expressions

16
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() SIDE VIEW
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(b) END VIEW

Fig. 3-2. Circular Cylinder 'eometry J



(-) ne(P) a no k)P "

( YY2)  k ( ,Y1 ,Y2 ) + k s Y2)  +

+ T 2  L. F(~ y, 2  - Fh(

where

wher =Impedance of the medium = = e7

k = wavenumber of the medium - 2 V/ a

s = length of the surface ray geodesic path from P to P

Og = radius curvature of surface along the ray - a

g ~sin2S
- angle of path with respect to the cylinder axis

a = cylinder radius

ke-jksG(ks) j 2;rs zo

£ ms

-iY= m kd1

2
y 2-n 1 kd2

d = height of source point, P', above cylinder surface

d2 = height of observation point, P, above cylinder surface

To = Torsion Factor - cos 6 for a circular cylinder

D - spatial factor = I for a circular cylinder

Fh(f y,y 2 ) - "hard" type surface Fock function

Fs(f ,y,y 2 ) = "soft" type surface Fock function

pe strength of a current moment source at P'

19



n' = unit outward normal vector at source point P

n = unit outward normal vector at observation point P

For # 0, the Fock function may be approximated by a Taylor series

expansion as followss

2 +2 2
(3-2) Fh( ,yl,y 2) =v( ') - $'1,i(I) [Yl Y2]

(3-3) F ( 6 y 1 IY2 ) =u( 6) + [u 1 ~ 2~F~) f yr ) [ Y 2

According to Pathak and Wang [8], when f is large, say a rapidly

converging residue series representation for the Fock functions may be

utilized as follows:

j IT141/2(3-4) v(i) e (e)

n-1

(3-5) u( = e 2/F 3/2

n-1

(3-7) u(, e J r/4 V 3/2e 3 (l n

n-i
where T and ' are zeros of the Airy function w2 (T') and its

ii n 2( wc ant i ts

derivative w2(Tn) ,respectively, which are tabulated in Ref. [8] and

repeated here for reference in Table 3-1. Tne Airy function, w2 (?), is

expressed ass

(3-8) w2 -= dz exp (Tz - )

20



TABLE 3-1

Zeros of W2(r) and W2 (t)

"Zn n, e-J"/13 and 1r =I~' e - 1 /3

n an''

1 2.33811 1.01879

2 4.08795 3.24819

3 5.52056 4.82010

4 6.78661 6.16331

5 7.9 13 7.37218
6 9.02265 8.48849

7 10.0402 9.53545

8 11.0085 10.5277
9 11.9300 11.4751

10 12.8288 12.3848
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where integration contour r2 goes from -co to 0 along the line arg (z) -

+27r/3 and from 0 to o along the real axis.

If, on the other hand, 6 is a small positive number less than or

equal to .6, one may employ a small argument asymptotic expansion for

the Fock functions as followst

(3-9) v(j) = 1 - L e j 7/4 3/2 7 3 / 2

(3-1) v( = + -je"' . 32 ++ e-j '/

(3-10) ' e z 3/2 + j 3 + 7r14 9/2_

(3-12) u,() = ' e-J 3V7 1/2 + j 2 + _e-j714 .7/2....

In the expansion equations, eqns. (3-4) thru (3-7), the first ten

terms in the summation may be used. For the small agreement asymptotic

expressions, eqns. (3-9) thru (3-12), the first three terms may be used

as shown in [8].

At first glance, the mathematics for computing the observed

electric field strength may appear to be profuse and overwhelming.

However, by confining the convex surface to that of a circular cylinder,

the electric field strength of eqn. (3-1) becomes a function of the

location of the source and observation points P' and PI the location,

orientation, and radius of the circular cylinder; and the magnitude and

direction of the current moment at point P', Pe"

22



CHAPTER IV

THE HYBRID TEChnIQUE

The hybrid technique seeks to combine the moment method with QTD

in an oDtimun manner so as to yield an analysis procedure for antennas

near large electrical bodies which is both efficient and accurate,

relying on a minimum number of assumptions.

The basic technique to be described in this paper was first pre-

sented in the literature by Thiele and Newhouse [1]. The approach is to

first model the wire antennas using the moment method and then modify

the generalized impedance matrix to account for the effects of nearby

conducting bodies via GTD. This differs from other hybrid approaches

which use the moment method to extend GTD [ 7].

The basic moment method equation, eqn. (2-4),

L/2

(4-1) I(z')K(zz')dz- - E (z)

f -L/2

predicts the electric field strength Ei at point zm w !:h Iz ,ne
z

to the current function I(z') over a wire of length L. Thru the use of

expansion functions, F n, the wire can be divided into N segments as

explained in Chapter II and so that the field at z can be written as

N

(4-2) I FaK(z,z)dz' E I (z)

z m

n

23
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Applying a weighting function, W ~ to eqn. (4-2) in order to satisfy the

boundary conditions in an average sense over the length of the wire

results in

L/2 NL/2
*(4-3) L W NIf F nK(zmz')dz'dz= U,/ W * -E z(z M)dz

f-L/2 mn-1 A -L/

I nter changing the order of integration and summation

N L/2 L/2

(4-4) EZ 'n WUrn F nK(zrnPz)dz'dz W U *E z

n-i _L/2 Az m -L/2m z

Following the notation used by Thiele and Newhouse, eqn. (4-4) can be

expressed as

N

(4-5) 1' <n ( L(J )> = <U , i - (z )>
n-1

where L(Jn) represents a linear operator which relates the surface

expansion currents to the field at point m. Specifically, it can be

thought of as the mnagnitudle of the field at point n due to a unit test

current at point n. For wires in free space with no other conducting

bodies nearby,

(4-6) L(J ) f K(zm,z)dz'

Referring to eqn. (2-16), eqn. (4-5) can be rewritten as

N

(4-7) Z I n Zmn V M

where
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(44) Z - <W3, L(Jn)>

(4-9) v < W , zZ)>

* Since the linear operator, L, relates the expansion currents Jn to their

electric fields, E, eqn. (4-8) could be expressed as

(4-tO) ZM = <W, ( )>

where a is a complex scalar. If conducting bodies are in the vicinity

of the wire antennas, eqn. (4-8) can be rewritten as

(-11) Z <w , L' )>

or

(4-12) Z =I + -g2 >%

where

E field arriving at observation point m directly from J n

E2 = field arriving at observation point indirectly from Jn due

to reflection or diffraction from a conducting body

a = complex scalar for E1

b = complex scalar for E2

Using properties of linear functions,

(4-13) Zmne = <W m, as1> + <j m, tE2>

(4-14) Z I =Z +z9
.mn n Ma

where

Z M= the "direct impedance" matrix term which relates the field

at segment m that arrives directly, to the current on

segment n
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g= the "delta impedance" matrix term which relates the fieldZin
at segment m that arrives indirectly, due to diffraction or

reflection, to the current on segment n

Z ' = the net impedance matrix termmn

The hybrid moment method procedure can thus be summarized by the

following steps.

1. Completely describe the geometry of the problem; location and

size of all wire segments and any conducting bodies in the vicinity.

2. Determine the net impedance matrix terms, Z mn' 

(a) Determine the average field at segment m, if any, which

arrives at directly from a test current of one amp at

segment n (Z m)•

(b) Determine the field at segment m, if any, which arrives

indirectly, due to reflection by a conducting body, from

a test current of one amp at segment n (Zr)

(c) Determine the field at segment ri, if any, which arrives

indirectly, due to diffraction by a conducting body, from

a test current of one amp at segment n (Zn.

(d) For each pair of wire segments n and m, sum the direct

and delta impedance matrix terms to obtain the net

impedance matrix term for that wire segment pair.

3. Define a field source which will generate an incident,

average field, Vm, directly on each segment m. (For transmitting and

receiving wire antenna problems, source field [Vm] would be non-zero

only for the transmitting antenna segments.)
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4. Solve the matrix equation [I [Z I [V to obtain the
n mn h

current for every segment of all the wire antennas.

<. Use standard, simple electromagnetic relationships to deter-

mine such parameters as the antenna input impedance, radiated power,

antenna efficiency, field patterns, mutual coupling between two wire

antennas, etc., based on the now known current distribution on the wire

antennas.

In order to implement this algorithm in a computer program which

would account for cylindrical surface diffraction, the first step was

to obtain an efficient moment method program. Richmond's thin wire

moment method program [8], incorporates the Galerkin method by using

piecewise sinusoidal functions for both the current expansion and the

weighting functions. This allows the program to converge using roughly

an order of magnitude fewer wire segments than if a pulse basis function

point-! atching moment method code, solving the same problem, is used.

Furthermore, Ekelman had augmented Richmond's code, giving it the

capability to deal with reflections from the curved surface of a cylinder

as well as diffraction from the sharp edges of a truncated cylinder, by

means of using GTD relationships. Therefore, the program was already a

hybrid moment method code. In both the basic Richmond code and

Ekelman's subroutines, the impedance matrix terms, Z mn, and delta

Impedance matrix terms, Z n, are determined by placing test currents on

segment n and determining the resultant field at segment n. The test

current distribution (expansion function) is as shown in Fig. 4-i wit.,

n-I modal currents for each n segment antenna. Thus, a four segment

antenna would have three modal currents with the end segments having

one modal current each and the other segments each having two modal
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currents. The amplitude of each modal current is taken to be one amp.

A typical segment n, which is not at either end of the dipole antenna,

*will tnerefore contain two modal currents as shown in Fir7. 4-?'. ',h,

program then determines the tangent field observed at various poin~ts P

which lie on segmnent m. This field at P is the vector sum of the field

contribution from modal current I (ETi) and modal current II (ET2/'.

Numerical integration of the field contributions is performed, resulting

in the impedance matrix term or delta impedance matrix term for segments

m and n.

For computing the surface diffraction Impedance matrix terms,

sdZ mn, a test is performed to determine If the surface of the cylinder

obstructs the "view" between the test segment n and the observation

segment m. If it does not, such as when segments m and n are on the

same monopole antenna, the tangential fields are set to zero. Other-

wise the tangent field components generated by modal currents I and II

on segment n are calculated by subroutines which incorporate the GTD

equations as discussed in Chapter III. However, in this case, the modal

currents are considered to be located at the midpoint of segment n where

the magnitudie of each modal current, p e , is found as the average value

of the current distribution over the wire segment for each modal current.

It may be computed in the following manner. As Fig. (4-3) shows, the

eight segment antenna is modeled such that nearly one-quarter wavelength

of the sinusoidal antenna current is assumed to be distributed over the

seven radiating segments. To obtain a more resonant monopole (almost

no reactance in the antenna Input impedance), the total length of these

seven segments was chosen to be .2428 wavelengths. WJorking in units of

radians where one wavelength is equal to 27rT radians, the length of the
29
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monopole is equal to 1.526 radians. Therefore, each segment is one-

seventh of this length or .2179 radians long on which reside piece-

wise sinusoidal currents as shown in Fig. 4-4. These segment current

distributions are normalized such that their maximum value on the

segment is one. In general, the segment current distribution can be

described as

(4-15) IM sin 3
sin n - #

where

L = length of the antenna in wavelengths

n = number of radiating equal-length segments in the antenna

By using standard integration techniques, the average value of this

current distribution may be determined as follows:

2 '7L

(4-16) 1av = 27TL sin Y dsn(2 YTL) sn

sn

Performing the integration yields:

1- cos (2.)

(4-17) 'av =2T i(-')- sin

Thus, for n = 7 and L - .2428, I - .502 amps. This, in turn, is theav

value that was used for the magnitude of the current moment, p e , for

the surface diffraction equations. The source and observation segment

interaction for surface diffraction is illustrated in Fig. 4-5. The

program assumes that the currents on segment n will launch two surface

field waves; one which will travel clockwise around the cylinder, the

other counterclockwise. Both fields will arrive normal to the surface
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of the cylinder at segment m, be added together as vectors, and dotted

with the direction of the mth segment on the receiving antenna to yield

the total tangential. field. As eqn. (3-1) requires, the program also

dots the a direction of the source segment modal currents on segment n

with the outward normal unit vector of the cylinder. For monopoles

normal to the cylinder surface, these dot products are all unity. The

tangential fields, E-TI and ET2, are then integrated in the same manner

as for the subroutines which determine the impedance matrix terms, Z mn

or reflection delta impedance matrix terms, Z r
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CHAPTER V

COMPARISON OF RESULTS

WITH AN ALTERNATIVE ANALYSIS PROGRAM

This chapter will discuss an alternative electromagnetic analysis

program which is promoted by the United States Air Force (USAF) and will

show how well the results of the USAF analysis program agrees with the

hybrid method of moments (MOM) program for a variety of cylinder radii

and relative antenna locations.

The Intrasystem Electromagnetic Compatibility Analysis Program

(IEMCAP) is a USA Standard FORTRAN program for computer-aided imple-

mentation of electromagnetic compatibility (EMC) at all stages of an

Air Force system's life cycle, applicable to aircraft, space/missile,

and ground-based systems [91].

The antenna-to-antenna coupling model, one of the many coupling

modes between equipment subsystems which TEMCAP can analyze, is

basically a geometric optics (GO) program which determines the severity

of interference that a transmitting antenna may unintentionally produce

in other antenna receiving systems on the same aircraft due to such

phenomena as the generation of higher order harmonics. To use the

antenna-to-antenna portion of IEMCAP, one begins by modeling the

aircraft as a conducting cylinder with a cone attached at one end.

Wings, modeled as inflinitely-thin flat plates, can be attached to the
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:;ides of' the cylinder. Next, antennas are described by their gain

patterns, supplied by the User. Up to three different quantized

levels of antenna gain may be specified for the spherical sectors which

enclose the antenna. The antennas are then positioned and oriented at

their respective locations on the cylinder that represents the aircraft

fuselage. The power, frequency range, signal modulation character-

istics, and relative harmonic levels of transmitters are enumerated by

the User as well as the antennas to which the transmitters are connected.

Similarly, the power sensitivity threshold, frequency range, and out-

of-band rejection of the receivers, as well as their antennas, are

specified by the User. IEMCAP will then determine the magnitude of

power delivered to a specific receiving antenna from one of the trans-

mitting antennas, based on the relative position of the antennas on the

modeled aircraft, the appropriate gains of the antennas, and the

frequency of transmission. The magnitude of the received power is then

compared to the receiver's power sensitivity for that frequency and

if it exceeds that sensitivity, a potential electromagnetic inference

(EMI) problem is predicted by TEMCAP.

In determining the magnitude of the power coupled to the receiving

antenna, IENCAP takes into consideration the distance between the

antennas (free-space loss), diffraction around the fuselage (fuselage

shading factor), and any diffraction off the edge of the wing which -.ay

lie in the direct path between the two antennas (wing diffraction

factor). These three factors, all in units of decibels, are added

together algebraically with the antenna gains (also in decibels) to

arrive at the power coupling factor between the two antennas for a ;iven

frequency.



The fuselage shading factor used by IEMCAP is based on work by

Hasserjian and Ishimaru i101. In their analysis, a function is derived

which relates the propagation around an infinite conducting cylinder to

that over a flat plane. This function is approximated by MEMCAP as

follows [iii

(5-1) SF -Ac (JA +

where

(5-2) A=/of
2  2r -

5.478 x 10-3 for A < 26
)? 3 .34o x fo3  r A > 26

f.508 3 for A < 26

= 562i for A ; 26

and

SF- fuselage (cylindrical) shading factor (dB)

/of = radius of cylinder (meters)

9 = angle around cylinder of propagation path (radians)
S

- wavelength (meters)

D = distance of the cylindrical segment of propagation path
c

It is possible to compare the performance of the hybrid moment

method against that of tEMCAP in computing cylindrical diffraction loss.

As part of the standard output, IEMCAP will print the transfer loss

between two antennas in units of decibels (dB). This corresponding

number can be obtained from the hybrid moment method program in the

following manner. The input power to the transmitting antenna can be

determined as
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(5-3) P1  = Real ['y i ]I

where

P'n = transmitting antenna input power (watts)

g = complex voltage at the antenna terminals from a voltage

generator (volts)

if9 = complex conjugate of the complex current at the antennaK~g

terminals (amps)

The power which is received at the other antenna is found by

observing the complex current induced in a matched load impedance of

36.2 + j.0104 ohms (input or terminal impedance of a "near" resonant

one-quarter wavelength monopole) connected across its terminals and

applying the equation

(5-4) Pout = Real [ Ir]Ir zL 

where

F = power developed at the receiving antenna terminals (watts)
out

]I = complex current at the antenna terminals (volts)r
if r* complex conjugate current at the antenna terminals (amps)

zL = impedance connected across the antenna terminals (ohms) =

36.2 + j.0104

Finally, the transfer loss or power coupling factor may be computed as

(5-5) PCF = 10. log10 1 L
i n

where

PCF = power coupling factor (decibels)

P = o oer at receiving antenna (watts)

P = power input to transmitting antenna
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The power coupling factor includes the gain of both he transmitting

and receiving antennas. In order to eliminate deviation between the

result-' of the programs due to different values of antenna gains, the

effective maximum broadside gain of the monopole modeled by the MOM

program was determined in the following manner. A test case was per-

formed in which the transmitting and receiving antennas were located

parallel to each other on the surface of a ten wavelength radius cylinder

and separated by a distance of exactly ten wavelengths as shown in

Fig. 5-1. These wire monopole antennas had a wire radius of .00005

wavelengths and were exactly.24 28 wavelengths long. The total power

coupling between the transmitting antenna and the receiving antenna was

determined by using the procedure previously described and found to be

-32.65 dB. Next, the far-field free space loss was computed using the

familiar expressiont

(5-6) FSL= 10. log ( -16 D 2

where

FSL = free-space loss (dB)

D = distance between antennas (wavelengths)

Using a value of 10 for D, the value of FSL is approximately -41.98 dB.

The difference between these two values is accounted for by the effective

gain of each of the two antennas (assumed to be equal). Therefon', the

antenna gain is found as

( -7) Gain = -32.65 - (-41.98)

2

or

(5-8) lain = 4.665 dB
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As a side point, this is very close to the Ideal maximum broadside gain

of 5.16 dB for a resonant one-quarter wavelength monopole antenna on an

Infinite flat surface. The gain of 4.665 dB derived by the MOM code for

the antenna on a curved surface was used as input data for the rEMCAP

code for the one-quarter wavelength monopole antennas.

The next step was to chorese an antenna configuration for both

programs. For the first configuration, a transmitting monopole antenna

was fixed on the surface of a circular cylinder while the receiving

monopole antenna was positioned in the plane of the transmitting antenna

perpendicular to the cylinder axis, at various angular separations from

the transmitting antenna as shown in Fig. 5-2. The radius of the

cylinder was. Initially chosen to be ten wavelengths. This corresponds

to the fuselage of a cargo aircraft such as a C-141 or a C-5A at around

one gigahertz (0Hz), close to the frequencies used by airborne military

navigation equipment.

Fig. 5-3 illustrates the excellent agreement between these two

radically different approaches for calculating the power coupling factor

between two antennas due to cylindrical surface diffraction. Here,

values were conivuted at ten degree intervals. The only significant

difference In results between the two methods is when the two antennas

are separated by large angles. At these angular separations, both the

short and long path diffracted field contributions are similar In

magnitude at the receiving antenna. However the difference in the

phase angle of the arriving fields results In a reinforcement or

cancellation effect. By plotting only the values between 160 and 180

degrees, this phenomenon can be more clearly seen as Fig. 5-4 shows.
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The MOM code data in Fig. 5-4 is very similar to a standing wave pattern

on a lossy transmission line in the vicinity of a discontinuity. The

distance between null points is one-half wavelength. One observes that

very close to 180 degrees, the total power received by the second

antenna can vary by almost as much as 20 decibels for a displacement of

one-quarter wavelength!

Next, the radius of the cylinder was varied. As an upper limit,

a cylindrical radius of 150 wavelengths was selected. This corresponds

to the fuselage of a C-5A cargo aircraft (30 foot diameter) at a

frequency of approximately 10 GHz which is near the operating frequen-

cies of airborne radar, precision approach systems, and electronic

warfare (EW) equipment. Fig. 5-5 shows very close agreement between

the two approaches for all angular separations less than 130 degrees.

As in Fig. 5-3, the MOM data oscillates for angular separations larger

than 160 degrees. However, since the separatio,, between the nulls is

less than.2 degrees, these oscillations appear as a shaded area.

Figs. 5-6, 5-7, and 5-8 show that the two programs generally yield

the same answers for smaller cylinders with a 5, 3, or 1 wavelength

radius. Again, there is some deviation for very large angular

seDarations due to the constructive/destructive reinforcement discussed

previously. There is also somewhat of a deviation for very small

angular separations. This is most likely due to the geometry situation

of the antennas and cylinder used by the hybrid MOM code. For these

small angles, the electric field is no longer propagating through the

surface boundary layer region described in Chapter III. Rather, source

points on the transmitting antenna, as well as the observation points
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on the receiving antenna, may more properly be considered as points

well off the cylinder surface, especially for the antenna segments

farthest away from the cylinder surface. Therefore, a different set of

surface diffraction equations should be used which permits the source

and/or observation point to be outside the surface boundary layer [6].

A case which lends additional support to this deduction is that of

the five-eigths wavelength monopole. The length of the one-quarter

wavelength monopole was extended to .625 wavelengths. The matched load

impedance was now found to be 73.5 + j400.7 ohms. The antenna effective

gains were computed by the MOM code as before and found to be 8.385 dB,

nearly equal to the ideal maximum broadside gain of 8.7 dB. This value

of 8.385 dB was used as the gain of the antennas in the IEMCAP code.

Fig. 5-9 illustrates the results of the two programs. Here the

deviation between the two codes is becoming significant. With the

antennas more than one-quarter wavelength above tie cylinder ,lrf:lce, many

more source and reception points on the antennas are no longer in the

surface boundary layer region. Thus, as for one-quarter wavelength

monopoles on smaller radii cylinders, the MOM code appears to be less

accurate.

A second type of orientation of the antennas on the fuselage was

used to introduce torsion in the paths between the antennas. The

antennas now are no longer in the same plane perpendicular to tne

cylinder axis as before. They are separated by both an angular

displacement as well as a displacement along the cylinder axis wnicn

lies on the z axis.
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Specifically, two cases of constant angular displacements of 90

and 180 degrees were chosen where the power coulnq factor *ms .omputed

and plotted as a function of linear separation parallel to the cylinder

axis. These orientations are illustrated in Fig. 5-10.

The results of the power coupling factors computed by both the

MOM code and the IEMCAP code for angular separations of 90 degrees is

graphed in Fig. 5-11. The agreement between these two methods is

amazingly close for all four linear separations computed.

Fig. 5-12 compares the results of the IEMCAP to the MOM code when

the angular separation is 180 degrees. Although the two codes =nroduce

answers that differ by approximiately 6 dB, this difference is most likely

due to phase Information that the MOM code accounts for which the

IEMCAP code does not (as explained in detail previously in this chapter).

However, both codes predict nearly equal changes in the power coupling

factor for corresponding changes in linear displacement along the

cylinder axis. Furthermore, for the 180 degree angular displacement

case, both codes show that the power coupling factor will actually

increase as linear displacement between the two antennas is increased.

Based on these comparisons between the MOM code and the IEMCAP

code in their ability to determine the loss in transmitted power due to

cylindrical surface diffraction, several conclusions may be drawn. For

intermediate angular separations (60 to 120 degrees), the deviation in

results between the two codes is less than one decibel. This is a strong

indication that both results are correct. For larger angular separations

(1200 to 1,9O ° ) deviation between the codes can be explained by the

reinforcement/cancellation effects due to phase information which is

accounted for by the MOM code but not by IEMCAP. Yet the IEMCAP code
51
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values do agree with the average values of the standing-wave type

natterns of the MOM code results. Thus, the MOM code results appear to

be correct for cylindrical surface diffraction involving large angles.

In addition, there is also good agreement between the two codes for

cases of linear displacement along the axis of the cylinder where

torsion is introduced into the path between the transmitting and

receiving antennas.

However, deviation between results of the two codes is more severe

for small angular separations (less than 60 degrees) between one-quarter

wavelength monopoles on small cylinders with radii on the order of one

wavelength. There is also a disturbing amount of disparity between the

results of the MOM and IEMCAP codes when a longer five-eights wave-

length monoDole is used. It appears that the MOM code fails (gracefully)

when source points are much more than one-quarter wavelength above the

cylinder surface or when very little of the propagation path between

the antennas resides in the surface boundary region, as for small

angular separations on small radii cylinders. To reduce the effect of

these problems, equations which account for curved surface diffraction

from source and observation points outside the surface boundary layer,

such as described by Pathak, Burnside, and Marhefka [6], should be

considered.
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APPENDIX A

DESCRIPTION OF SUBROUTINES

The purpose of this appendi- i to furnish a brief description of

the subroutines which were added to Richmond's thin-wire program in

order to account for surface wave diffraction around a circular cylinder.

For a description of the subroutines used in the original thin-wire

program or the subroutines developed by Ekelman which account for

reflection from the surface of the cylinder, the reader is advised to

consult References [3] or [2] respectively.

Subroutine SGANTC, listed in Fig. A-i, is called in place of

SGANT. Subroutine SGANTC is the same as subroutine SGANT, described in

Reference [3], with two exceptions. First of all, subroutine GGSCYL is

called instead of GGS. Secondly, the statements which modify the mutual

impedance matrix C to account for lumped impedances contained in the

ZLD matrix, have been modified to accommodate the C matrix, stored as a

two-dimension array instead of the original single-dimension array used

in Richmond's program.

Subroutine GGSCYL, listed in FIg. A-2, is similar to subroutine

GGS, of the original thin-wire program, described in Reference [ 3].

However, GGSCYL will test if the surface of the cylinder obstructs the

line of sight between the end points of the source and observation

segments. This is done by calling subroutine VISIBLE whose parameters
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SUIBROUTINJE SGANi'C( ICJ.IA.IB.INM.INT.ISC.11.I2,13.JAJB.MD.N.NO.NM.
2 NP .AM,BM,C,CGD.CMM.D.EP'2.EP3.ETA.FHZ.GAM.SGD.
3 X. V.Z,7tD,ZS. I2NMRADM)
"101CNi IS THE SAME AS SGANT EXCEPT THAT GGSCYL IS CALLED INSTEAD

C (11
* I ~CJIPLE X ZG,ZH.ZS.EGD ,GDCGDS.SGDS.SGDT.B01

COMlEf-X P11 ,PI2.P21,P22.011.012.021 .O2,',EP2.'P.ETA.GAM.EP3
COMPL-EX EPSILA. CWEA. BETA .ZARG
COM'LtD( P(2.2K.0(2,2).CGD( INM).SGD( INM),C IC.J,ICJ).7LD( I2NM)
DIMENSION X(NP),Y(NP).Z(NP).D(INMI.IA(INM).IB( INM),MD INM.4)
OiINSION I1(ICJ),121 ICJ).13( ICJ).JA(ICJ).JB( ICJ),ND( I 4M).1SC)INM)
DAT,-, EO,TiP.Ug.b3.854E-12,6.28318,1I.2566E-6/

2 ~CYMT3X,*AM a,El0.3,3X,*DMAX =*.Elrd.3.j4.DMlN *.Flif3)

[7 'I = 1 N. N /2

UL) 1Z 1-1.N
10 C 1 .J)= ( 0. ,0.
11 04NTINUE

I(C;M). L E. 0. )GO TO 12
C,MEG~A=TP*FHZ
EPISIL A=CMPLX(E0,.-CMM1 .E6/OMEGA)
CW[.A= .ff.1. )*OM~EGA*EPS!LA
EE EA=C)MEGA*SORT1UB)-CSk3RT(EPSILA-EP)
2ARr;=bETA*AM
CAl L CBES(ZAR(G.BOI)
ZS-BETA*82FI/CWEA

12 ZHi ZS. (TP*AM*GAM)
DMIN=1.E30
9MAX=.0
DO 23 J=1,NM

1 A 3 J

DSJ=ORT((XK)XL)a2.YK)KY(L))**2tZK)ZLl*2)
IF D(J) . LT . MIN )DMIN=D(J I
IFID(J)I. GT. DMAN IDMAX=D( .)
EGD-CEXP(GAM*D(J))
CGDi J )=( EGD.1 , iFG0 1/2.

20 SIIJ J)=(EGD-1./EGD)/Z.
IF(DM!I.LT.2.*Ai)GO TO 25
IFklNBS(GAM*AM).GT.8.06)G0 TO 25
Ir(CA'BS((CAM*DMAX).GT.3.)GO TO 25
lI-(AM.GT.S.)GO TO 30

25 N =k
WRI 1TE 16,2 )AM , MAX ,DM1 N

30 DO 230 K'=1,NM
NEIK 40( K
'A = 1A ( K)
K3= T 31 K)

CGOS CGD( K)
SGDS=SGD( K)
DO 200 L-I.NM
Nlt.~ - IDl (
L A= IA( L )

%i)a I'G L I
0L) =1

Fig. A-I. Subroutine SGANfTC
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I -MW i-I IN(11- /

IF,,K3.EO. 12( 1 )GO 1To 36
IF? K8.EQ.II (I1) F I I.

GO TO 49
36 IF) KA.E0. 13? I) FI-1.

48 DO U0 JJ=IJ4DL
J4D( L JJ)
mMMMM +J
IF) 1.GT.J)GO TO 280
FJ-1I

F(L6.EO.I2(J))GO TO 46
IF( Lc3.EQ. 11(J) )FJ=.. 1

GO 1 0 50f
46 IFkLA. tO. 3 J ) )F3=- 1.

.! S =2
5Z iF'NL.NE.0)GO TO 168

IF(K.EO.L)GO TO 120

1i' I'J(.EQ.0f)GO TO 80
C SEGM;NTS K AND L SHARE NO POINTS

CALL GGSCYL( X( KA).Y(KA),Z(KA),X(kB ),Y(KB ).Z( KB),)C(LA),V(LA),Z(LA),
2 X( zB I,Y( LB),Z( LB I,RADM,AM,DK,CGDS,SGDS.DL ,SGDT, INT,ETA,GAM

WQ TO 168
C SEGMENTS K AND L SHARE ONE POINT (THEY INTERSECT)

80 KG=ff
J M i:r3
JC=KA
KF I
1NOz KB-LA )*( KB-LB)
1 ( 1.AD. NE .0)GO TO 82
*J C=yKB
' F =-I

KG-- 3
82 LG 3

IFkL3.EO.JC)GO TO 83
.JP=L3

83 SGN F 1 .

DO 98 LL=I.2
LP=IAB S(LL-LG)
r.KF..LP)=SGN*Q0K.LL)

98 t CONT iNUE
-O 10 168

C K-L (SELF REACTION OF SEGMENT K)

Fig. A-1. (Continued)
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pr'(..0

IF(CMM.LE.0A)GO TO L50
D =GAM *D K

-';Z-i/( SGDS**2
311 =ZG*l SGDS*CGDS-GD )/2.
ZG=Zr/ ( SDS**2;
01 1=ZG*(SGDS*CG0S-GD )/2.
O12=ZG*(GD*CGDS-SGDS 1/2.

150 1SCK=ISC(K

IF'ICK.EQ.H)GO TO 155
. F1814LE AM )GO TO 155
CALL DSHELL(AM,BM,DK,CGDS.SGDS,EP2,EP.ETAGAM,Pll1 P12)

0 1 --P12 +012

CALL GGMMi.B,DK,.0,DK'AMCGDS,SGDS,SGOS,1.
2. E A, CAM.PP11. 2. P21. P22)
01 i='l 1+O11

PJ1'212+12

HI ,2')=012

2.2)=Qll
IFKA.IE.LA)GO TO 160
G~ U 11 168

160 P 1 .1 h-Q12

P(2.2 1=-012
168 (1 .J -C( I,J).FI*FJ*P( IS,JS)

IlF II.NE .3 )C ( J,1 )=C ( I . J
200 CCNTINUE

C ADD THE LUMPED IMPEDANCES TO THE C MATRIX.
IS G =

301 lF7D1E)N.0.wGO TO 352
IF(1EIG.E0.12NM) GO TO 350

303 1Sli-[SEG + 1
(, 0 1 1- 30 1

30Z lmO)DE =
307 1Ff 13EG.GT.INMi GO TO 304

IF(I?(IMO['E).EQ.IA1ISEG)) GO TO 35
306 lm0DE=IM'O0E +1

!FiIMODE.GT.N) GO TO 365
GO TO '327

304 i'-EG=1SEG - INM
!I;,-(IMODE).EQ.IB(ISEG)) GO TO 305
ISEGzl.EG * NM
GO TO 306

305 r-(1M)DFIMODE)=C(IM0DEIlMODE) + ZLD(ISEG)
GO0 T 1) 32F3

350 -nti II f4UE
RETUXN

360 WJPiT(6.601) I',EG.ZLD(ISEG)
601 VORMAF(1X.*FATAL ERROR: UNABLE TO FIND DIPOLE MODE TERMINALS*~/

I :O0R LUM2E) IMPEDANCE ZLD(*,13.*) = *,ZE15.6)
! 1

TO V 35k!

Fig. A-1. (Continued)
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SUBFROUT INE GGSCYL( XA.YA,ZA, 9B,YB.ZB,XI Y I Zl ,X2,V2 Z2,RADM. AM
2 05 ,CGDS .SGDS. OT .SGDT ,INT, ETA .GAN .011,P]2.P21, P22)
COMPLEX( P1I,P12.P21 .P22,.CJA.EjB.EJI,EJ2,ETA.G;AM,CIC2.CST
COMPLEX EGD.CGDS,SGDS.SGDT,ERI,ER2.ET1 ,ET2
COMPLEX ERlI, EP12,ER2I *ER22
CONP E ETlI,ET12,ETZI.ET22
LOGICAL A\0 S,BVlS.VlS
DATA FP/12.56637/

CB=( V?-V 1)/DT
CG=(--2-Z I ),'DT
C.4 S 'YB -XA )DS
C 6 S Y 8--VA D/OS
-G S Z8 -ZA /D S
CC=CA*CAS+CB*CB3S4CG*CGS
lF(A3S(CC,.GT..5jg7)G0 TO 200

20 SZ ( IX )C S ( l\')C3+Z -A *G

C THIS VERSION OF GGS WILL TEST IF CYLINDER SURFACE
C PREVENTS "VlS1BIL1Tv" BETWEEN THE TWO SEGENTS.
C

CALL VISlBLE(XA.'lA,X1,Yl,RADM.VIS)
fF ( .NOT. V IS) Go TO 301
'ALL. VISI8LE(X9~.YB.X2.V2,RADM,V1S)
IHAO14T.VIS) GO TO 301
GO TO 309

301 INS-"2'CJNT/2)
IF(IA~S.LT.2)INS='2
I P NS+ 1
DELT=DT/ INS
T= .0
DSZ ~CC*DELT
P12 ( .0. .0)

AMS -AM *AM
SGN --I .
DO 130 IN=1,IP

C OBSERVATION POINT (X & Y VALVES)
T)(='I T*CA

TY1 T*CB
C
C X & Y VALUES OF THE TWO SOURCE POINTS ARE XA & YA AND XB & YB.
C
C DETERMINE IF THE LINE BETWEEN OBSERVATION POINT AND "LEFT" END OF
C THE SOURCE SEGMENT INTERSECTS THE CYLINDER.
C

CALL. VISIBLE(XA,YA.TX,TY.RADM,AVIS )
C
C DETERMINE IF THE LINE BETWEEN OBSERVATION POINT AND "RIGHT" END
C Or r4E SOURCE SEGMENT INTERSECTS THE CYLINDER.

CALL VlIBLE(W8B.Y8,TX,TV ,RADM.BVIS)
ETI1 "0.

E T12-0.

t1I22=0.
IF(AVIS.OR.BVIS) GO TO 701
Go TO 750

C OBSER4ArION POINT CAN "SEE" Al LEAST ONE OF THE TWO SOURCE SEGMENT
C END FOI~llT.

Fig. A-2. Subroutine GGSCYL
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- ' 1' T*CA -XA -SZ*CAS
NwZ Yl-iCB-~YA-SZ*CBG
..W"I.T*CI>-ZA-SZ*CGS

7 * 2- IVYZ**2-ZZZ**2

SGO TO 702
,U ) 0-

UE3 P.'AF1)N 'U1AI CA4 "SEE" END POINT A.
iO a-R!RS3 + Z7i**2)

A- i ( AM*Iq I
)A R

tP!L ]A~lADS f ZZ1*Ej1*CGOS
II (C [J I ,GDS ) +FAC*ERl I
Ei=ZZ*LA
.4(C*EJI * AC*ERl
B IS) GO TO 703
I i 5

C .o 'TW POINT- CAN "SEE' END POINT B.
I. T RS + ZZZ**2

IP -GAM*':,

iS.B/R2
ER!2> -ZZ2*EJ2
E1I'rtC*EJ2 + ;AC.*ER'2
tIK22-E-jB*SGV3 ZZ2:EJ2*CGDS
ET2ZCC(-EJ2*;GDS) + FAC*ER22

750 ETI=,-Tll + ETI'
j2rI+ ETZ

C3. +SGN

E CO =,- EYP ( fAMI * (DT
'21=CiIEGD-1 ./EGD)/2.
ECD=,:EXP(CAM*T)

"'=C * ( E G D - I . / E G D )!2
Pi 1114IFTI*Cl
P! ,=l2+LV1*C27
P..I 21*ET2*Cl

22 2 -E T 2*C. 2

100 ~-G

P1 1=cSTlP I
P12=C ST *PI 2
F2I=-,ZST*P21
P22=CST*P22

200 SZIV)I.XA)*CAS+tY1-VA)*CBS,(Z1-ZA)*CGS

Z?=SZ! DT*CC

DLD*. RHI+RH,'1/?.
IC-(DJD.GT.20.*AM .AND. 1INT.GT.O)GO TO 20
IF:1O)D.LT.AM)D3DAM
CALI C-GmI.(..D.SZ1.,22.DDoCGDS.SGDS.SGDT.I.

301* V')R T( I .CA: C

Fig. A-2. (Continued)
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C RD-( CbS*CCGCG3 *CA )/SS
GO=t CBS'CA..CAS.CB;'Ss

O 4- XA 1CAD'AYI -VA *BD+( ZI-ZA)* CGDD =A9S(O)
IF( ( LT. AM )DkAM
'Z=XA+SZ*CAS

Z Z =ZA S Z*C S
9V' -K1-DIQ'CAD
4Pi-Yl -UIK*CBD

' ,-6S*CGD-CGS*CBD
,:BPCGS*CAD.LAS*GD
(:(-P.CASWCBD -CBS*CAD
P h'CAP*(.XPI-XZ ) +C-p*( ypl-y7 I+CGp * Zp 1ZZ I

;ALL GGMtl(SI,1 lDS,T1 .TI4DT.DKCGDS.SGDS.SGDT ~ccETA CAM2 p~1.P12j.21 P 2)
RE TUP N

NOl

Fig. A-2. (Continued)
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Inc lude thf, x and y end-points of the source and observation segments,

a3 well :; the radius of the cylinder in meters. The z values of the

end-Doint5 are not required since the axis of the cylinder is assumed to

li on the z coordinate axis, as for the cylinder reflection subroutines

written by Ekelman. VISIBLE will return the logic variable VIS which

will be "FALSE" if the surface of the cylinder intersects a straight

line drawn between the source point and the observation point. As with

75S, line 16 will test if the source and observation segments are

parallel to each other with small displacement. If so GGSCYL calls

rGMM just as GGS does. If closed-form impedance calculations have been

selected by the User, which is done by setting variable INT equal to

zero, statements 23 thru 26 will determine if the cylinder surface

obstructs direct radiation between the two segments. If so, the use of

subroutine GGMI.I is not permitted. If the mutual impedance is to be

calculated via Simpson's rule, GGSCYL will again determine if the

surface of the cylinder will interfere. At this point, GOSCYL imple-

ments the concept introduced by Ekelman in the reflection subroutines

SG where the source segment current is considered to be concentrated at

points on either end of the source segment as shown in Fig. A-3. The

end points of the source segment are labeled A and B for convenience.

Subroutine ,GSCYL then deternines the field which arrives at various

points T that lie on the observation segment from the two end points of

the source sergment, provided that the cylinder surface does not intersect

the line between the source segment end point, A or B, and the observa-

tion point, T. If it does, the field contribution from that end point

ts zero. '3SCY-L then integrates the eive. field along the observation
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a( X8, Y1, ZB)

SOURCE
SEGMENT

AI

RR2

OBSSER VATION

Fig. A-3. Interaction between source and observation
segmnts n suroutne GsCyL
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segment just as the original GCS subroutine does to determine the

mutual impedance term for that pair of segments.

Subroutine VISIBLE, listed in Fig, A-4, is frequently called by

other subroutines to determine if the surface of a circular cylinder of

radius RAD, whose axis is coincident with the z axis, intersects a

straight line drawn between points P and R. If the line does not

intersect the surface of the cylinder, the logical variable, VIS, is set

to a value of "TRUE". Since the problem is independent of the value of

z, the cylinder is reduced to a circle in the z = z0 plane. Because of

its repeated use by many other subroutine programs, VISIBLE was designed

to execute as fast as possible. The geometry of the problem is

illustrated in Fig. A-5. First the distance of points P and R from the

axis of the cylinder, IOPI and 1IOR, is determined and if they are less

than the radius, at least one of the points lie inside the cylinder.

This is possible for the monopole antenna model used. In that case, the

points can not "see" each other and the value of VIS is set to "FALSE".

Next, the direction cosines of the line thru P andR are determined.

Point Q, which lies on line PR, is determined such that the length of

line IQI represents the minimum distance between the cylinder axis and

the line PR. This requires that line OQ be perpendicular to line ?H.

Using this fact and a theorem from analytical geometry [12] which

determines the distance between a plane (or line, sketched as a dashed

line in Fig. A-5), normal to a line (PR) that intersects the plane at a

point (P), and the origin, the distance P0. can be very quickly deter-

mined. This allows one to locate point Q. Using the relationship of a

rieht triangle (AOPQ) the minimum distance between the line PR and the

65
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',I'F~NI IN[ V IS F- I lPY ,IY ,RX ,RV HAD VI S
C
C IV 1;1 I0T INE filTERMINE', IF A STRAIGHT LINE DRAWN THRU POINTS
C P AI4E 1, WILL[ INTE'RSFI,2 THL C:IRCLE WITH RADIUS A WHOSE CENTER IS
C AT IHE ORIGIN. IV THE LINE PR DOES NOT INTERSECT THE CIRCLE,

C THEN VIl '" = " ~
I AL vSA

;IAL -P21 R2

LR -'I Rx R *RY
PA1V' RALD*RA0 - .09
IF;LP.- Lr.RA[D2 .01. LR2.1-T.RAD2) Go To cufo

C COMiT LfljIFi'IoN COSINES THR.U P & R.
DL ~.T((~~PX*2 *(RY-PY)*2)

I F I If) . RE r110:
i I F X !4)1

C COMPL*E F UIECTION LUINC1H ()I PERPENDICULAR LEG SP ON L!NE OR.
C S5114. iAR TO SZ 1CAL CULAT ION I N SBR GGS .

SpR CI - Py*C2
FIND LI ,-ATION OF 0 EIRPENDICiLAR INTERSECTION 0

'19 1S * p + *
TLSi IF Q LIES EETWEEN P AN) R.

IF ( '<.T OX .AND. OX.GT.RX .OR.
I P"X.GF.QX AND. QX.GT.PX) GO TO Ifog

Q11 *~ S 2P P V
.~PY GT.fO1 AQD. OY.T.Ry .OR.

I R!.GT.GY .AND. Q.GT.PV) GO TO 100
C CLOSCI;T POINT TO 'CYLINDE". DOES NOT LIE BETWEEN '3 AND 0.

lIrf S"2=s,'*SP
C COMPUITE LEN(;TH OT' FERPENDICJLAR LINE FROM LINE OR TO CYL INDER AXIS.

DP=S')PT(LP2-SP?)
C DETE'lNl-4 IF 1141E SECTION WITH CYLINDER OCCUJPES.

IF(D-I.LE.RAP) V'S=.EALSE.

C FUIN'd H, INSiDE T41E CYIINDER; OK IF PART OF "MONOPOLF" ANTENNA
C. HOWEVLR. POIN7 Mt!Sf NOT BL "VISIBLE" TO 3UTCIDE POIN'S.

L N D

Fig. A-4. Subroutine VISIBLE
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R I

Fig. A-5. Geometry concepts of subroutine VISIBLE-
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cylinder axis is rapidly computed and compared to the radius of the

cylinder. Thus, if the distance IQI is less than the radius of the

cylinder, line PR intersects the cylinder. There is a situation, however,

where both noints may be located on the same side of the cylinder, as

for points P' and R' shown in Fig. A-5. In this case, although line

P'R' intersects the cylinder, the cylinder surface does not intersect

the line segment between noints F'and R' and therefore, P' and R' can

still "see" each other. However for this case, point Q', which marks

where line P'Q' is closest to the origin, does not lie between the

points P' and R'. Thus, in the subroutine, if point Q' does not lie

between the two points, and both points are located outside the cylinder

(tested at the beginning of VISIBLE), then the two points will be visible

to each other, regardless of how close the line thru the two points is

to the cylinder axis. This is the purpose of the test at statement 29

of the subroutine.

Subroutine SG determines the delta impedance matrix terms due to

reflections from the surface of the cylinder. This subroutine, listed

in Fig. A-6, is the routine written by Ekelman except that a call to

subroutine VISIBLE is made at statement 159. If the surface of the

cylinder is determined to intersect a straight line between the source

segment end-point and the observation point, then there is no field

which arrives at the observation point due to reflections from the

cylinder surface.

Subroutine SGSURF, listed in Fig. A-7, is the subroutine which

calculates the delta impedance matrix terms due to boundary-layer

surface wave diffraction from the surface of the cylinder. The first
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C * * IS THE SAME AS SG EXCEPT THAT SUIBROUTINE 'VISIBLE" IS CA ..f 0

C * r ECLUDE 1JJ')_PLING ANALYSIS BETWEEN TWO SEGMENT '3)]rr tAIDJE.H
C * FRt'M EACH OTHER BY THE CYLINDER.

LIMP t~ZGZw.?S,EGDGD.CGDS,SGDS.SGDT,801

fOMIX PII.PIZ,P21,P22.211 .012,021,022.EP2.EPETA.GAMJ7P3
C,.MPLEX EPSILA ,CWEA. BETA,ZARG
COMPLEX P(2,21.O(2.2),CGJ)(l),SGD( 1),CI ICJ.IC.3),ZLD1 I
C')MPL EX E XI, E Y 1,E ZlI, EY2, EVY2 , E2,ETPR ,ETP P ,P H,ERPR .E RP P
COMP..EY EX.EYEZ.ERX.ERY,ERZ,ETI,ET2,EIPR.EIPP.CI .C2.CST
t 1)G ICA L VIS
11 1 ME NS ION UN( 2), USC21 .VI 3)
[LIMF*NSION Xl 1). VI1).Z I ),D( I), 1A 1,18(2 ),MD' INM,4 I

ICATA E0,TP,U0U/8.84-12,6.28318I.2,66E-6,
DA.TA FP/i2.56637/

2 FORMAT(3X,*AM =*.Ei0.3.3X.*DMAX = *.EI0.3,39,*DMIN =.IO3

C *

C * WARN INGC
C * SG IS THE ONLY SU,3'OUTINE WHERE THE VA-0E OF

* THE CYLINDER. RADIUS "A" IS IN UNITS OF WAdE *

C *LENGTHS. NO- METERS 4

C
C
C

EP-EP3
!CC='N*N+N 1/2
DO I J= I N
b0 IJ I = IN

is C( I.J)=(0..S.0.
1 1 CONTINUE

ZS-( .0,.0)
1I'CMM. LE . . GO TO 12
SME~GA17T P *FHZ
ErSILA=CMPLX(E0.-CMM-I.E6/OMEGA
iWEA=( .0,1. )OMEGA*EPSILA
EETA=OMEGASF'T( UO)*CSORT( EPSILA-EP I
ZAPG= BETAM
CALL CBES(ZARt.Bj6I
7S=BFTA*Bgl /CWEA

12 ZH ZS,(TP*AM*GAM)
DMIN=I .E3kl
DMAX- .0if
DO 201 J=1,NM
K" IA) J
L 16 J
Dl J I SQRTI( ( (K )-X(I) 12Z+( VIK )-'Y .I)*2+( ZIK -Z(I I. 2
I F~ O t1 JLT .DM IN )UM IN=D(J
I F ') ( ' T. D14A 4 ) DMAX=D(J
EGD-CLXP(GAr1'*D(JO

20 SGDO(.)=(EGO-!.'EGD)/2.
IF)D.IN.LT.2.*AN)G0O TO 25
I 1CABS(GAM*AM).GT.0r.Z6)G0 TO 25
IF(C. S(GAM*DMAX).GT.3.)GO TO 25
IFiAM.GT.0.)GO TO 30

25 '4=0
RI T, 6 . ' AM. DMAX . M I N

30 -lu 23J K- I NM

- 'II ~ Fig. A-6. Subroutine SG
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W.A~ -A( K)I

DK-D( K

!SGI)S SGD(K)

ND. 40( L
LA= IA( L
1. B B ( L1
D L=D( L
SGDT',00( L)
N IL =0
0O '00 1h=1.NDK
I=MlHK.II)

MM= 1 -1 * - I 1 I /

IF I3.EO.2())GO TO36
IF ., .EO0 1) )F I~ I

GC TO 40
36 1 F KA.E 0. 13() I= 1-I

40q D:, 22W ~J"1,NDL

c IF I.GT. ))GO rC; 200a

1i''A3.EQ. 12(ji)Go TO 46 [IF) L9.[0.TI(J (P3=-I.

GO TO 50f

46I
59 'F(NIL.NE.0frjO TO 168

CC BEr~iN ;:.)IVALENT TO GGS I~C C
CA-z:K(ULB --Xl LA) (IDL

CG- Z( LB-Z( LA) )!DL

I Ns 1 IS 1
(t1 r-DUL/INSI

P2101=

P)= 2) ( '0.)
P1 )(0, 0i. )I

r''2)= (0. 0.)

DO 1010 IN=! .P
)(C=( 'U(LA) T*CA)/WL

.ZC=* Z( LA)+T'CC ).WL

1C 0, J P- I .
1; 31P.IT..2 rofo1082

Fig. A-6. (Continued)
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G.O TO 0 So

83 , W
y t 81 w

84 1h I'WE

C VISIL u.1TY TES. BETWEEN SOURCE SEGMENT END POINT AND OBSERVATION PT.
C

.:ALL %'ISIBLE( XSRYSR,)(C,YCA,VIS)

IF( . 401r.VIS) Go) TO 102

CCRF'['TC FINDS 7'1E REFL- PT ON THE CYLINDER
cc

CA-L Ri-N4rc tSi.VSR.ZSR,)(C.YCZC.A.B,XR,VRZR.VR.UR.VI .VIM)
cc
CC GN-- FINDS THE FIELD AT THE REFL PT WITH K-SEG AS SOURCE
cc

ZFR= YR*WL

CALL L;N ( (A .(A ,(A ,(K )Y K )Z K )X R YR
2 ZRP.AM,D)K,CGDS,SGDI .ETA.GAM,EXI .EYI.EZI ,EX2.EY2.EZ2.JEP)

cc
CC NANDb FINDS THE NORMAI.,BlNORMAL.ANEU TANGENT VECTORS AT REFL PT
cc

CALL NANDB( A B,IUN. UB ,VR)
cc
CC OEGIN TO FIND FIELD AT XC,YC,ZC DUE TO REFLECTED FIEL-D AT XR.YR,ZR

TF I= TP

S vN = ! SR - )(
SYVN iSR -YVR
SZN= !SR-ZR
W AG =SQRT( SXN*SXN+S'iN*SYN+SZN*SZN)
'VA4= )Xi/SMAG
S 1i=N/SMAG
SZ'N=SZN/SMAG

C TESTING FOR ff./ff. IN ATAN2
TEMP=SXN*UB( I )4SYN*UB(2)
[F kTEMP.EO.0.) GO To 5
WR-ArAN2( TEMPSZN4
Gf) TO 6

5 Wil kf. 0
6 SW.=SJN(WR)

CW=CC (WR)
S ST2 =S W*SWCI4*CW*CTH I*CTH I
RH802-S MAG
( SVI-=- 0S ( V R
S14V=3IN(VR)
UD-=SQRT( B*B*CSV*CSV+A*A*SN4VWSNV)

C U) 0D D * [0/AiB
RHOI=SMAC*RG*CrIHI/(RG*CTHI*2.*SMAG*SST2)
0 IPR 4 =S I N(WR - r1I/ 2. ) *US ( 1 )
UlPRWSINkWRrPI/2.)*UB(2)
tliPR.=CO(WR-PI/2. I
Uf PP 'C S YN =1 PZ- SZN*ULIVRY
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U I PPI 'SZN*[)] PP 4 '')1 PR-
0 1PP.' -';(N*U I P k-

1JRPP'-UIPRX*VI(2)-JIeRV *,L

L =EZ I
C-O loI IM,)DE=1.2
E17'R -( UIPRX*EX*UIPRY'[Y .1 1RZ*EZ)

ERPR -SORT(FAO1ARHO'E -4-P
E RPP =SrRr(RHOI *RHO2 ) .. 1,
ERX(=EPPR*UIPRX ERPP*I,"''
FRV~=ERPR*UlPRY+ERPI-1,--
E PZ= CRP R*U IPRZ E RP P *0R!'

CC DOT T14- FIELD WITH- THE -- :EG DIRECTION
cc

IF(IMODE.EQ.1)ETi=ERY*CA+ERY*C8+ERZ*CG+ETI
1F(IMiDE.E.2)ET2=ERX'CA+ERY*CB+ERZ*CG+ET2

F V -E Y2

102 CONTINUE

CC ASSIGN INTE~GRATION WEIGHTS AND MODAL CURRENT VALUES

cc CW =,i. + SGN
[F(LNi.EQ.1 .OK. IN.EQ.rP)CWT=1.
E G0=CEXP (GAM* DL -T)

EGD=;LEXP( GAM'vT
C21-CWT1(EG0-I./EG0)!'2.
PlI='1 L+ETI*Cl
P1 2=P 1 +ETI *C2
P.?!=P'2t*ET?*C 1

100 S(.N.--SGN
C~zTz-DELT/C 3.*SGDT )

11?=CST*P 11

P21 =CST*P21
P22 = CST *P22
P, I t , P II
P1 =

16 CI ( NE) C( .J)-I I =C' I S JS

20O (IONTIf4UE
RFT'JRN
END

Fig. A-6. (Continued)
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SL'IROUT INE SGSJRFC ICJ, IA, IB, INM. INT, ISC, II,12.13,JA,JB,MD,N.ND,
INMAMBM,C.CGD,CMM.D.EP3,ETA,FHZ,GAM,SGD,X .Y,Z,ZLD,

2 ZS,SZADM,WL.NC,FAC)
COMPLEX CSGDS,EN1 ,EN2,EMAGS,EMAGL
COMPLEX ZH ,ZS,EGD,CGDS ,SGDS,SGDT,B11l
COMPLEX P11 ,P12.P21,P22,EP,ETA,GAM,EP3
COMPLEX EPS1LA,CWEA,BETA,ZARG
COMPLEX P(2,2),CGD(1 ),SGDC1),C(ICJ,ICJ),ZLD( 1)
COMPL.EX ETI,ET2,C1,C2,CST
LOGICAL VIS
DIMENSION NC(I)
DIMENSION X(lI).Y 1 ),Z( 1),D(l1).IA( I).I8( 1),MD INM,4)
DIMENSION 11( ) ,12(1), I1(1 ,JA( ,.JB(1) ,ND( 1). ISC( 1)
DATA E0,TP,U0/8.854E-12,6.28318.1 .2566E-6/

2 FORMAT(3X,*AM = *,E10.3.3X,*DMAX =*,E10.3.3X,*DMIN =*,E10f.3)
EP=EP3
DO 11 J=1,N
DO 1.9 1-1,N

11 CONTINUE
ZSIj .0. .f)
IH(CMM.LE.ff.)GO TO 12
3ME.GA=TP*FHZ
EPSILA=CMPLX(E0d,-CMM*1.E6/OMEGA)

IETAWOMEGA*SORrU U0*CSQRT(EPSlLA-EP)
ZARGBE TA *AM
CALL CBES(ZARG.BZI)
ZS=BETA*B01 /CWEA

12 ZH=ZS/(TP*AM*GAM)
DMIN=1 .E3H
DMAX= .0
DO 20 J=1,NM
K=IA(J I
L'-IB(J)
D(J)=SQRT( (X( K )-X(L))**2+( Y(K )-Y(L) )**2e(Z( K)-Z(L) )**2 I
IF' D(J).LT-DMIN)DMIN=D(J)
IFD(J).GT.DMAX)DMAX.-D(J)
EGD-CEXP,(GAM*D(J )
CGD(SJ)-(EGD+1 ./EGD)/Z.

28 SGD(J)-(EGD-l./EGD)/z.
IF(DMIN.LT.2.*AM)GO TO 25
IF(CABS(GAM*AM).GT.ft.Z6)GO TO 25
IF(CABS(GAM*DMAX).GT.3.)GO TO 25
IF(AM.GT.2OACO TO 11Y

25 N-0
WRITE( 6,2)AM,OHAX,DMIN
RETURN

30 DO 200 K=1,NM
NDK-ND( K)
KA= IA( K)
KB-IB(K)
DK-D( K)
CGDS CGD( K)
SGDS-SGDC K)
C ̂ GVS--CGDS/SGDS
DO 220 LwI,NM
NDL-ND( L
LA- IAC I
LB..I3(L I
D. -D11 L

F'ig. A-'?. Subroutine SGSURF
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SGOT-SGO( I

DO 2,30 11 INDK
I =MD( K . I I

IF(K3.EO.12CI))GO TO) 36
IF( K3.EQII(I )FI--I.

GO TO 40
36 tFkKA.EO.13(I)lFI=-l.

I 2
48 DO 2280 33=I.NOL

J3:MDL .33)
121 =12(i)
123j =12(J
II(NCt ,21 ).EO.;i .OR. NC(123) .EQ.H) GO TO 200

C I F I .GT .J)GO TO 28f0
FJ=1.
IFfLi3.EQ.I2(J))Go ro 46

46 IF( LA.EQ. 13(3) )FJ=-i.

50 IFU4IL.NE.H)GO TO 168
NIL-I

cc

CC BEGIN EQUIVALENT TO GGS
cc
C COMPUTE DIRECTION COSINES OF EXPANSION MODE SEGMENT L

CA=("(LB)-X(LA))/DL

CG-( Z( LB )-Z( LA) )/DL
C COMPUTE DIRECTION COSINES OF TEST SEGMENT K

CAS=(YUKB)-X(KA) )/DK
CBS=( V(KB )-Y( KA) )/OK
CCS=(Z(KB) - Z'fPA))/'DK
INTI=INT
!F( NC(LA).EO.id .AND. NC(KA).EQ.0 ) INTl=2#*1NT
IF( a4C(KB).O.A0 .AND. NC(LB).EQ.0 ) INTl'-20*INT
IF( '4CLA).EQ.J .AND.NC(KB).EO.ff) INTI=20'*INT
IF( '4C(KA).EQ.Z .AND. NC(LB).EQ.0 ) INTI-20*141T
INS=2*( INTI/2)
IF) I.'S.LT.2)INS' 2

DL'LT=DL/INS
T=H.

P (81 . .0.)

SN -I.
Do 200 INZI.IP

PN- Y(LA)+T*CB)
P7=' L( LA ).*C()

CLOCAYE oUJRCE COiRENT AT CENTER OF SOURCE SEGMENT
'PPX-(KA) - DK*.S*CA!,
Pry-i'KA) + DK*.SCS

C Pt)Z-Z(KA) + I-*C
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C DETERMINE IF P CAN "SEE* PP. DO NOT COMPUTE SURFACE E-FIELD IF
C THEY CAN "SEE" EACH OTHER.
C

CAL L VISIBLEC PPX,PPY.PX.PY.RADM.VIS)
IF(.NOT.VIS) GO TO 261
ENl~"CMPLX(O. .0.,
EN2-CMPLX(ff.,f.0.
GO TO 262

261 CONT INUE
C
C COMPUjTZ THE MAGNITUDE OF THE SURFACE FIELDS AT POINT P FROM
C CURRENTS AT POINT PP.
C

CALL ESURFI PPX,PPY,PPZ.P ,PV ,PZ.RADM.RADM,ETA,GAM,
I SPA.CPA.EMAGS.EMAGL,N)
IF tN.LE.0) GO TO 250

C
C COMP'UTE SHORT PATH AND LONG PATH CONTRIBUTIONS FROM MODAL
C CURRENTS I AND 2 AT LEFT END OF THE TEST SEGMENT.
C
C DOT CURRENT DIRECTION WIYH SURFACE NORMAL AT SOIJRCE POINT PP.
C

OOT=ABS(CAS*COS(SPA)) + ABS(CBS*SIN(SPA)C

Eli4-tEMAGS + EMAGL)*DOT*FAC*DK

IFtNDK.NE.1) Ei42-ENI
262 CUT I NUE

CPA-ATAN2( PY ,PX)
C
C DOT THE TOTAL FIELD FOR THIS OBSERVATION POINT WITH THE L.-SEGMENT
C DIRECTION.
C

ElENI*(ABS(CA*COS(CPA)) + ABS(CB*SIN(CPAfl))
ET2-EN2*(ABS(CA*COS(CPA)) + ABS(CB*SIN(CPA,fl

cc
CC ASSIGN INTEGRATION WEIGHTS AND MODAL CJRRENT VAL.UES
cc

CW'T=3.SGN
IF(IN.EC.1 .OR. IN.EU.IP)CWT-1.
EGD=CEXP(GAM*(DL-T) )
CI=CJT*(EGD- . /EGD)/2.
EGD=CEXP( GAM*T)
C2-CWT*(EGD- . IEGD)/2.
PII=PII+ET1*Cl
P 12=P IZ+ETI*C2
P21=P21+ET2*Cl
P22=P22+ET2*C2
T-T+DELT

100 S,;N= -SGN
CST=-DELTI(3.*SGDT)

P11-1-ST*F 11

P '1 CST*P2 1
P22-CST*P22
PC 1.1 )rP11

PC 2.1 ,=p21
P(2, ?)=P22

168 C(I,JC-C(I.J)+FI*FJ1*P(ISJS)
C IFC,1. NE .J)C J. I -~C ( IJ

ZOE CONTINUE
250 RETU N

ND Fig. A-?. (Continued)
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half of the subroutine is the same as for SGA14TC or SG. However,

unlike SGANTC or SG, the current on the source segment is now consider-d

to be located at the center of the source segment. For a typical, mid-

antenna segment, the current distribution is made up of two modal

currents as described in Chapter IV, The magnitude of each modal

current, previously determined in the main calling program according to

the procedure detailed in Chapter IV, is passed to subroutine SGSURF

through variable FAC. Thus, the fields ETI and ET2, arriving at the

various observation points, P, on the observation segment are due to

current moments with magnitudes equal to FAC, located at the center of

the source segment, generated by modal currents I and II on that seg-

ment. Subroutine VISIBLE determines if the source segment midpoint,

PP, can be "seen" directly by the observation point P. The diffracted

field contribution is determined by a call to ESURF only if the two

points can not see each other, ESURF will compute the values for

EMAGS and EMAGL. EMAGS is the field which arrives at the observation

point due to the shortest, most direct path between the source and

observation segment, as shown in Fig. 4-3. EMAGL is the field which

arrives at the observation point due to the most direct path between the

source and observation segment but traveling in the opposite direction

around the cylinder as Fig. 4-5 illustrates. Subroutine SGSURF will

then add the two fields, EMAGS and EMAGL, as complex numbers, multiply

the result by the length of the segment, and take the necessary dot

7roduct; as required by eqn. (3-i) to account for the orientation of the

source and observation segments with respect to the surface of the

cylinder.
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Subroutine ESURF, listed in Fig. A-8, implements eqn. (3-1).

Based on the location of the source point, PP, and the observation

point, P, EURF determines the length of the short and long paths around

the cylinder by applying equs. A-I and A-2 (see Fig. A-9). The pitch

angle, 8 , is derived, based on eqn. A-3 and eqn. A-4 provided in

Fig. A-10. The subroutine computes the other parameters of eqn. (3-1)

in a straightforward manner. The hard and soft Fock functions, Fh

(I, Y1 Y2 ) and F s (l, Yl, y 2 ), are evaluated by calling the function

subprograms FH and FS respectively.

The function subprograms FH and FS, are listed in Figs. A-i! and

A-12. To increase efficiency, the complex values listed in Table 3-1

for 'r and '' were transformed to rectangular notation and stored in
n n

data arrays TN and TPN. The constant coefficients for the hard Fock

function residue series (eqns. 3-4 and 3-6) are stored in data array RK

in function subprogram FH while the soft Fock function residue series

(eqns. 3-5 and 3-7) are contained in data array RX in function sub-

program FS. Data array KV in function subprogram FH stores the constant

coefficients for the hard Fock function small argument asymptotic

expression terms (eqns. 3-9 and 3-11) and the soft Fock function

asymptotic expression coefficients (eqns. 3-10 and 3-12) are stored in

data array KU in function subprogram FS.
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ll)BR)'Jr1N[ ESURF( PP( ,Pp .PPZP. Y,PZ.A.B.ErfA.GAM.SPA.CPA.
I E MAGS , FMAG L ,N )
COMP-EX ETA,G.AMFMAS.LMAGLEMAC-4E7MAG2

c NOTE: A 8 !B F HIS SUBDOUTINE

c ARE IN UJNITSZ OEQ *TE% NOT *

C WAVELENGTHS.

C

COMPLEX FH,FHVAL~fS,.-SVAt
COMPLEX J,G
REAL K
REAL[ H

G(K,S;K*CEXP(JIrKIfl/(J*PI*2.*S*ETA)
IF(A.NE.0) GO TO -1
N MAG 1' (P1(F4P\PV

C!NNA=SCIRT( P<11X*P *PVy
C FA A(tAN 'PYP
DI =SNMAG-A
D2=f:NMAG-~A
IF(SNMAG.LE.A; 01=0Y.

C 4AG.IEA)D2-P

C COMPJ TE !FNGTH OF SHORr PAT-) AROUND T4E CYLINDER FROM NORMAL
C PROJECTiON OF PO'INT P TO0 NO'MAL. PROJECTION OF POINT PP ON THE

IL CYL ' NUE I' IlJRf ACE.

S7~SPTAA*,~A~PA)*2.+ (PPZ-~PZ)**2.)

CSIMILA)k-Y COMPUTE THE LONG,-ER PATH Bv GOING THiE OTHER WAY4 ROUND
THE CYLINDER BETWEEN THE TWO POINTS.

SL=S1Ri(A*A*(?.lPI - ABS(SPA-CPA!)**Z. + * .-P)*.

C COMP'urt THE PiTCH OP TORSION~ ANGLES v0R BOTH SH0RT AND LONG PAT-9S.

TiP-lZ-PZ.EO.0. ) GO TO 431
?LIS=.ATAN2(PPZ-PZ ,A*\SPA-CPA))
9 LTS=;PI/2.) - APSCPSIS)
""~,TN(P-P.k~l*. - AS(SPA-CPA ))

f~(PI2.) AE'SPSIL)

401 fLE-T"> F'1/2.

C COMPlifE THE MAGNITUCE OF THE NORMAL r1ELD AT P FOR BOTrH THE
C SHORT AND LONG PArH AROUND THE CYLINDER, STARTIIG WITH TH-: SHORT PATH

)liTA ulL L TS

AI iA(. (GAM)
1.10 [PATH- I

lYH I A .E. t I GO 'P 3I

FM I a. 0

Fig. A-8. Subroutine ESURF



GO TO) 303
302 RH')-G A(SIN(DELTA)*S1NiDELTA)I

RHVG-A.(S1 !(ETA)*S1N(D'LTA))
M=( K*RHOG12,)*k( 1.13.)
X.1=MkS/RHOG
!F (1.L2} . TO 9ff4

FSVAL=FS( l! ,YI ,YZ)
EMAGI=FHVAL -FHVAL'*J/.K*S) + FSV4AL*(J/iK*S))**2
EMAG?=IFSVAL -FFHVA-,'TO*TO*,J/(K*S)

3Z3 IF ( IPATri EO.1 ) GO TO 201
IMAG_=ETA*ETAki ENAGl + EMAG2)*G(W ,SI
GO T) 100

201l EMAG3=ETA*ETA*(EMAGl EMAG21*G(KsS)
S=SL
DELTA=DELTL

I jaf CONTINUE

C ERRC)R MESSAGES. N IS USED A3 AN ABORT-COMMAND FLAG.
C

(;0 -0 g912
902 W4RIT,-(6,t02) S3MAG.A

Go 0 f' 9 10

903 IT:(b,b03) CNiMAG, A

904 \4R:TE(g)>b04) 91
91Z --

601 FORMAlt//.* fZS$ FATAL INPUT DATA ERROR*/
I 6A.*GEOMETRY EOUATIONS IN THIS ROUTINE ARE VALID*/
2 6X,*ONLY FOR CIRCULAR CYLINDERS*/
3 i,* *,El: 3,2X,*8 J03

602 fORN~,&B//,- SES FATAL INPUT DATA ERROR*/
I bK,*S~lRCF POINT IS INSIDE THE C\!LINDEPR&/
2 5X."GiMAG ,E10f.3,2X.*A , *.E1)33

601 r,)umATu//,* SST% FATAL INPUT DATA ERRORi*/
6<,'()RSERVATION POiN4T 13 INSIDE T14E CYLINDER*/

604 FORMAT(//,* $SIS FATAL INPUT DATA ERROR*/
I 6x,*X, I S LESS THAN UP, EQUAL TO 0.ff*/
2 6X,*XI *.E[Z3)
E ND
-OMFI.X FUNCTION FS(XI.V1,V2)

c COMFUTE; rHE 'SOFr"-T!P[ FOCK FUNCTION
COMF.E ),TN( 1hI,R *r(2),,/(3).KUPt 3),S uM
COMPLF', 1), UP

DA"TA j 9 I.)

DATA TFN/(1.1690455.-2.02)4363),(2.2q439 ,-3.54,?2G9-3.

.(5-965,8-0 311b36.41330.-l.li6737.3126b-.79U)

DAlA KU/ (. b6' ?OC38/..6'6657kfbB7),(O... 41ti6%-661,1.
I(.0ag/915167. f391516?)/

DATA l/(-.93-.985o3-)3998S603



1 .-4496182514.-.4496182-314),
IF YI.GT.0.6) GO TO I11

CCOWr ' U AN L) UP jSI. 114W eE i MALL A RG Mi NT ASYM I QT I C EXPRs SS iON SC
UzI. - KU(I 1 !-*.5 J )U (314.

Gc~ [0 1 10

C COMP,'UE U AND UP .SING THE CONVERGING RESIDUE SIRIEs IF xI IS
C GPEAT:'F THAN 01.6

I k c .f ' '

1)0 210 N=1,19
211f4 SAM' I-J- TW*2.3 CEYP(-J*X(I*Tlq(N) SUAM

J)P.' 2iSoRr )(I )*S9HM

C COM'!'rc FS(XIVI.w12) AND RETURN
I S~5' J5(.p-I*IIl(I~I~~2
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PP( PpxPpy, PP:

d

Z Z 0 PLANE

/2 2
(A-i) SS - a 2(SPA C PA)' + (z -z)

(-) S- a 2(277-SPA - PA)2+ (zs

where

3PA *arctan V)PP

r<pA arctanpX

Fi A-9. Path length calculations for su'broitine ESURF



a SPA- P

*C~'-fPA- Pl

(A-3) =rta 2
s PA CA

Fig. A-10. Pitch angle calculations



ti-Ill l I X I4\J I I OI l I 'I(V I . v '
C LIIII " ;: I" I VI4I 41)1 IIlNi I IOIN

I ,, f I i'< ,.4 ! II 14 olt , .j , 1 11( ,l ).1. IIP ( ) (IN
I X U. UI'

A J, /( 1.. )/
I 1,, 1' IKK,/ 2. 6,1. ' 2 7 , . T( , '"7 . .7 , q ! .'4 1.?.'.; g z 4 ?

,,.l.: l'4/l( ) ,,j' 4!;<ri *r.- . (, ;4 4 l) (2 .f4" /r , -'] {,~'_,P '

1. 7 / , -1. 7 . 13 0 4 . 1 (2. /12315 , .87/ /i I . ', ii,',. . '17('; 2 I
2) ( .2 2.'l/ ,-7. l81 44 .(45. nT~u1, -4;.(,'jYlrU:: I. '2.zll '44 2. -'4]. ' ''"1

W I I 85' :* I f)! 31544744 ( 6 .11 .14 . -1 I . I I il!'. , )
! .. U/' G.'665104 7 I .' 6570687 10 4 1 . 7

0> , . Kll ( -. P 19 q 11 7. 'f I, - . 'I ? 99i8.5off} 3 , I ., " , },

1 (. I iI 1 25 111, - . 44 6II411 1") 1, )/
IF (24.G I. U~) GO T 1.'J

C
C C0. 1 ViT U kNbD UP USING THE SIALL ARGUEI.NT ASVIIP r It r -V I . I c',
C

IJ I~i IU( I '"., 1 5 + 1, I(.) xI *3 . + f,I. ( *)XI* . 5
U'( UP( I (SORrI I 4+ IUP2 *XI*)XI + IUF(3) 1I 3
GO TO I Il)

C
C COi'HIITIT! LI A'D UP USING IHE CONVERGING RESIDUE SERIE'; IF YT IS
C GREAIL4 IVAN 0.G

1iU ) 0," I- r.
Uit) 7_1 4 l-1 , I'Y

2)J '.. W4 '. I1I) J "X I I( )) + SUM
,I'U 1.A I XI,'I 1 . 'I UH

Sil- -, . ,If. )
Li 1 14 =I1, I0

21.4 .L'l (i:J"X T= VI(NI *;.I3. " - CEXP(-J*XI*TPI(P )) + SIM

C
C COMF' Ui F FS(XI.VI,LV I ANU RETURN

110 FS IJ + J*.5*(UP - 1.b*U/XIP1)(1*Yl+V2*V?)
RE TURN
END

Fig. A-li. Function Subprogram FS
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t_( MFI r F U INCT ! -N FH( I.

C COMP'JTEc H)A4U' -IYP i C9 it I
UOMPI.Lx VVI
DATA TIPN/( .50939b,-.892.-J8 1.64095,-2.813215),

1 (2.41005.-4.1743-29),.. E8b.C'-.-i.337583),(3.68609,-6.384495),

2 (4.244245,-7.351248), 'IF- -!-a. 257942), (5.26385.-9. 117256), 1
3 (5.73755,-9A2:71'?8,',L !.'4.-10.725S1./

DA~TA KV/( .3133.3534,34)~..16-6/
1 (.J171351542..kl7l3ll5A?),

DATA kVl/(.-6266570~687- .i.6,7Ii687) (ff. ..5KZ 33.3?33).

DATA J/(0. 1
DATA RK/(1.253314137,-.2 14-:37)jZ2.50662827/5,2.5xY6628275S/
IF (.(1.GT.0.6) GO TO lorb

CCOMIUTE V AND VI 'JSIN'G THE 'PAL' IPUMENT ASVMP1OTIC E P'RESSIONS.
c

V=I. -KV(1**XI*,].S +K/'2.'AI**3.
V I z + I (,I)VT 1 .5 - KV1I ( 3 4 .-

GO 71) 110F
C
C COMPUTE V AND V1 UBIN,- THE CONVERGING RESIDUE SE41ES IF XI IS
C GREATER THAN 2f.6

100 Sim= ( J. ,0.
DO 2,YO N~1,10

200 SUMzCEXP(-,j*XI*TPliN))/,TN(N) + SUM
V=RK 1 )*SORT(XY )*SUM
SUM1. . 0. )
DO 2 10 N= I1,0

210 SUM=CEXP%-J*XI*TPN(N) + SUM
V1zRK( 2)*XI*11.5*3LlM

C COM1VUTE FH( XI Yl Y2 )All) RETUR~N

110 IU1=V - ,3*Vl*(Y1I( * Y2*VZ)I(4.*Xl)
RETURN
E ND

Fig. A-12. F~unction Subprogram FM
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